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The propagator for a charged particle in a constant magnetic 
field and with a quadratic potential 
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Singleton Park, Swansea, SA2 8PP, UK 

Received 19 February 1985, in final form 4 April 1985 

Abstract. We obtain the propagator for a charged particle in the presence of a constant 
magnetic field and any positive definite quadratic potential. We then calculate the trace 
and obtain the eigenvalues of the Hamiltonian concerned. 

1. Introduction 

In recent years there has been an increase in the number of papers devoted to the 
calculation of exact propagators for quantum mechanical systems. Whilst this is a 
good thing, there has perhaps been a tendency to follow the direct line of approach 
too closely. If one wishes to calculate the propagator for a charged particle in the 
presence of a magnetic field and a quadratic potential, the direct approach leads to 
history dependent path integrals which are extremely difficult to evaluate [ 1,2]. The 
method of summing over quantal states is also very difficult. An alternative approach 
is taken in (3) where the memory dependent term is replaced by a time dependent 
potential which is somewhat simpler to handle. The method of approach adopted 
herein has been developed from its beginnings in [3]. The propagator is given for a 
constant magnetic field and any positive definite quadratic potential and from it we 
obtain the eigenvalues of the quantum mechanical Hamiltonian. 

2. The propagator 

Let H( h, B )  be the quantum mechanical Hamiltonian 

H ( A ,  B ) = i ( i h V , , + f B ~ y ) ~ + $ ' A ~ y  

where A' is a positive definite quadratic form and B E  R3. Let H (  p ,  q )  and L( q, q )  be 
the corresponding classical Hamiltonian and Lagrangian respectively, namely 

H (  p ,  q )  = +( - p  +;B A q ) 2  + $qTA2q, 

L ( q y q ) = f q 2 + + B * q . q - 1  24 T A 2 4. 

We have set e = m = c = 1 for the sake of clarity. The classical equation of motion 
inherent in the above system is 

-q=BA4+A2q. 
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Letting qc be a solution of the above with the initial and final conditions qc(0)  = x and 
q c ( t )  = y ,  define Sb,  x, t )  by 

Sb, x, 1) = L ( Q c ( s ) ,  q c ( s ) )  ds. Io‘ 
If G ( y ,  x, t )  is the propagator of the Schrodinger equation 

[ih a / a t  - H (  h, B ) ] +  = 0 

then 

G ( y ,  x, t )  = (2~ih)-~’*/-a’S(y,  x, t > / a y j  axk1”2 exp[iS(y, x, t ) / h ] .  

This is just the propagator which you would expect to obtain by using a semiclassical 
method or by formally using a Feynman path integral approach. This in itself is hardly 
surprising but the specific form for G ( y ,  x, t )  will enable one to compute the trace and 
spectrum for any B and any positive definite A2. Once we obtain the form of G ( y ,  x, t )  
we will check the following three conditions 

(i)  

(ii) 

(iii) 

[ih a l a r  - H (  h, B ) ] G ( y ,  x, t )  = 0, 

G ( y ,  x, t + s )  = 1 G b ,  z, t ) G ( s  x, 

lim G ( y ,  x, t l f ( x )  dx =f(y). I r+o+ 

Define the matrix B by Bz = B A z for any z E R3 
of motion is obtained from the solutions of 

9 )  dz, 

A solution qc of the classical equations 

where 

S ( s )  is no more than 

Define the 3 x3 matrices E ( s ) ,  F ( s ) ,  G ( s )  and H ( s )  by 

I E F  [ z  - B ] [ G  H I ’  

Thus 
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We may simplify the integration of L(&, qc) by use of the equation of motion to get 

S(Y ,X ,  t ) = t [ q c ( t )  ' 4 c ( t ) - q c ( O )  * 4 C ( O ) l .  

Making use of e(s) we have 

S ( y ,  X, t )  =f{yTH(t)F-'(t)y+~TF-'(f)E(f)~+~T(-2F-'(t))T~} 

where t > O  is small enough to ensure that F - ' ( t )  exists. For example, if A'= 
diag(A2, A 2 ,  p2)  and B = (0, 0, B )  then F (  t )  has an eigenvalue proportional to sin pt. 
Clearly F-'( t )  is not defined for t = r / p .  We have used the equalities 

FT( t )  = - F (  - t )  

and 

G ( t ) -  H(t)F-'(t)E(t)=-(F-'(t))T. 
The first of these equalities is obtained by showing that FT( t )  and - F (  - t )  are solutions 
of a second-order differential equation with the same initial data and the second 
equality follows from 

The determinant 1-a2S(y, x, t ) / ay j  axk /  is just IF-'( t ) ( .  

equation 
Condition (i) is satisfied since S ( y ,  x, t )  is a solution of the Hamilton-Jacobi 

-as/at = H(V,S, y ) ,  

H being the classical Hamiltonian, and since p ( s )  = H ( s ) .  
In order to check condition (ii) one has to grind out the integration. This, however, 

is quite instructive. The term in the exponent of G(y,  z, t)G(z, x, s) which only involves 
L is 

(i/2h)zT(F-'(t)E(t)+H(s)F-'(s))z = ( i /2h)zT(F- ' ( t )F( t  + s ) F - ' ( s ) ) z  

and upon integration this leads to the correct amplitude for G(y,  x, t + s) assuming 
that 1 + s is small enough to ensure that F-'( t + s) exists and that F-'( t ) F (  t + s )F- ' (  s) 
is symmetric. Let D = F-'(  t ) F (  t + s ) F - ' ( s )  for convenience. Then 

DT= ( F - ' ( t ) F ( t + s ) F - ' ( s ) ) '  

= F-'( s ) ~ F (  t + s)'F-'( t )T  

= -F'( - s ) F (  - t  - s )F- ' (  - t )  

= - F- ' (  - s)[ E (- S) F (  - t )  + F (  -s)  H (  - t ) ]  F-'( - t )  

= -F'(  - s ) E (  -s)  - H (  - t ) F - ' (  -1) 

= H ( s ) F - ' ( s ) +  F - ' ( t ) E ( t )  

= 0, 

proving that D is indeed symmetric. We are left with the exponent 

yTH( t ) F - ' (  t ) y  + x T F - ' ( s ) E ( s ) x  

-a{[y'( -2F-'( t ) )T+ ~~( -2F- ' ( s> ) lD- ' ' ~} '  
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to simplify. Upon expanding this we get 

y'[H( t ) F - ' (  t )  + F-'( t )TF(s )F- ' (  t + s ) ] y  

+ x'[ F - ' ( s ) E (  S )  + F-'( t + s ) F (  t ) F - ' (  s)=]x +yT( -2F-'( t + s))'x. 

The term in both y and x is already in its final form and the other two terms take on 
their correct forms after some simple algebra involving the F matrices. For example 

F-'(s)E(s)+F-'(t+s)F(t)F-'(s)T 
= F - ' ( t + s ) [ F ( t + s ) F - ' ( s ) E ( s ) +  F ( t ) ( G ( s )  - H ( s ) F - ' ( s ) E ( s ) ) ]  

= F-'(  t + s ) [ ( E (  ~ ) F ( s )  + F (  ~ ) H ( S ) ) F - ' ( ~ ) E ( S )  

+ F ( t ) ( G ( s )  - H(s)F-'(s)E(s))l 

= F- ' (  t + s)[ E (  t ) E ( s )  + F (  t )G(  s)] 

= F-'(  t +  s ) E ( t +  s). 

Thus condition (ii) is satisfied. 

t + Ot. If one now applies the method of stationary phase to 
In order to see that condition (iii) holds first note that t F - ' ( t )  is well behaved as 

the limit is easily obtained. 

3. The trace and eigenvalues 

The trace is 

where G(x, x, t )  is simply 

(2vih)-3'21~( t)l-"2 exp{(i/2tt)[xT( ~ ( t ) ~ - ' ( t )  + F-'( [ ) E (  t )  - 2 ( ~ - - ' ( t ) ) ~ ) x ] } .  

We have previously shown that both H ( t ) F - ' ( t )  and F - ' ( t ) E ( t )  are symmetric and 
so we only have to consider the symmetric part of ( F - ' (  t))'. We are left to calculate 
the determinant of 

H ( t ) F - ' ( t ) + F - ' ( t ) E ( t )  - F ' ( t ) - ( F - ' ( t ) ) '  

= G( t ) + ( H (  t )  - I ) F - ' ( t ) ( I  - E (  t ) ) .  

One may show that 

Thus 

G(x, x, t )  dx = -i 
H ( t ) - I  
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The eigenvalues of [ E\:;-r E((/)-,] are simply (e'")' - 1) where iaj, j = 1, . . . ,6,  are the 
eigenvalues of [!.*2 f , ] .  If we choose our coordinate axes to be the eigenvectors of 
A' we may represent A2 and B by 

a 2  o o 0 -B3 B2 

A 2 =  0 b2 [ 0 0 P] -5: Bo' -:I]* 

This enables the eigenvalues iaj to be written as *iA where A is the positive square 
root of one of the three real roots of the cubic equation 

( A 2  - a')(A' - b2)(A' - c') = A2[A'1B12 - (a2B:+  b2B: + c2B:) ] .  

Let the roots of the above equation be U:, a: and a:. Then 
3 

j = 1  
I, G(x, x, t )  dx = - n [(e'")' - 1)(1 -e-i"~')]-'/2. 

One may formally expand the above expression in powers of ei"J' or calculate its 
Fourier transform to obtain the eigenvalues of H ( h ,  B). These are 

Elm" = f i [  ( 1 +&)a, + ( m  +;)a2 + ( n  + $)a3]  

for 1, m, n EZ'. 

4. Conclusion 

The propagator is 

G(y ,  x, t )  = ( 2 ~ i h ) - ~ ' ~ l F (  t ) l - ' / 2  

xexp{(i/2fi)[yTH(t)F-'(t)y+xTF-'(t)E(t)x-2~TF-1( t)y]} 

where E, F and H are easily calculable. From this we have obtained the trace in terms 
of t and thus the spectrum. As one usually obtains the propagator for particles in the 
presence of a magnetic field by calculating history dependent path integrals one will 
be able to use the propagator above to gain information about such path integrals. 
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